Early initiated postoperative rehabilitation reduces fatigue in patients with operable lung cancer: A randomized trial

Morten Quist,⁎ Maja Schick Sommer, Jette Vibe-Petersen, Maja Bohlbro Stærk, Seppo W. Langer, Klaus Richter Larsen, Karen Trier, Merete Christensen, Paul F. Clementsen, Malene Missel, Carsten Henriksen, Karl Bang Christensen, Christian Lillelund, Henning Langberg, Jesper H. Pedersen

⁎Corresponding author.
E-mail address: morten.quist@regionh.dk (M. Quist).

ABSTRACT

Introduction: Little is known about the optimal amount and timing of exercise strain in concern of the operation wound and with regard improvement of physical function and quality of life (QOL) after surgery for lung cancer. On this background, we decided to investigate the effect of early vs. late initiated postoperative rehabilitation in patients with operable lung cancer on exercise capacity, functional capacity, muscle strength, and QOL.

Methods: The study was designed as a two-armed randomized controlled trial with randomization to either early initiated postoperative rehabilitation (14 days after surgery (ERG)) or a control arm with late initiated postoperative rehabilitation (14 weeks after surgery (LRG)). The primary endpoint was a change in maximum oxygen consumption (VO2peak) from baseline to post intervention 26 weeks following lung resection. Fatigue was measured with EORTC QLQ C30 LC13.

Results: From April 2013 to June 2016, 582 patients with operable NSCLC were screened for eligibility. With 119 patients randomized in the early rehabilitation group (ERG) and 116 randomized to late rehabilitation group (LRG). There was no significant difference from baseline to 26 weeks between ERG and LRG (p = 0.926). There was a significant difference from baseline to 14 weeks between groups (p = 0.0018). There was a significant difference from 14 weeks to 26 weeks between the two groups (p < 0.001). We found no significant differences in QOL but we found a significant difference between ERG and LRG from baseline to 14 weeks in fatigue level in favour of ERG.

Conclusion: This is the first randomized controlled trial to investigate the effects of early vs. late initiated postoperative rehabilitation in patients with lung cancer. There is no difference in the commencement (early vs. late) of a postoperative exercise program for patients with lung cancer on exercise capacity. But to reduce fatigue patients should be recommended to initiate early exercise programs.

1. Introduction

In patients with early stage lung cancer, radical surgical resection is a prerequisite for cure and extended survival [1,2]. In addition, quality of life (QOL) and cancer related fatigue (CRF) will also be affected by the disease and side effects of treatment [3–5]. CRF is known as one of the most distressing symptom related to cancer and cancer treatment, causing intense negative effect on functional status and QOL [6–9]. This vicious cycle of functional impairment, reduced physical capacity, increased CRF and reduced QOL is self-reinforcing.
and may have negative fatal postoperative consequences if untreated [8,10–15].

Supervised high-intensity exercise training is associated with improved exercise capacity and QOL in most cancer patients [16,17]. Systematic reviews have reported that both pre- and postoperative exercise interventions are safe and feasible for patients with operable NSCLC, and suggest benefits on exercise capacity, symptoms as fatigue and some domains of QOL [18–20]. In addition, exercise training has also been associated with improved muscle strength, reduced post-operative complications and shorter length of stay at hospitalization [21].

American and European guidelines recommend supervised exercise-based pulmonary rehabilitation for patients with comprised lung function following lung resection for lung cancer [22], and also recommend early pre- and post-operative pulmonary rehabilitation [23]. However it is an open question which exercise program should be preferred. Therefore, in clinical practice there is great variation in rehabilitation recommendations.

Fast-track rehabilitation following surgery for lung cancer is safe and effective [24], but it is unknown how early high intensity exercise training should be initiated following lung surgery. Furthermore, knowledge about the effects of training on tissue healing [25] in patients operated for lung cancer is needed. The PROLUCA pilot study showed that postoperative rehabilitation, including supervised high intensity exercise training, is safe and feasible when initiated two weeks after lung surgery [26]. This is in accordance with the encouraging findings in other trials both with focus on lung surgery [27] and lung surgery and/or chemotherapy and/or radiotherapy [28]. Improvements in functional capacity (six-minute walk distance), work performance (ergometer work load) and reduced heart rate at rest after 28 days were demonstrated [27,28]. Little is known about the optimal amount of exercise strain on the surgical wound and the resulting improvement of physical function and QOL. In other populations e.g. patients with myocardial infarction early initiated exercise training in the acute phase (six hours to seven days) has shown to result in greater benefits on exercise capacity compared to exercise training interventions initiated in later treatment phases (7–28 days or ≥29 days) [29].

On this background and with the results from our feasibility study [26] we decided to investigate if the effect of early (14 days) vs. late initiated (14 weeks) postoperative rehabilitation in patients with operable lung cancer was more effective on exercise capacity, functional capacity, muscle strength, CRF and QOL.

2. Methods

2.1. Trial design

The study was designed as a two-armed randomized controlled trial with randomization in a 1:1 ratio to either an experimental arm consisting of early initiated postoperative rehabilitation or a control arm with standard late initiated postoperative rehabilitation.

2.2. Participants

Patients above 18 years of age with pathologically verified NSCLC stage I-IIIA assigned for curative intended surgery, or patients with strong clinical suspicion of lung cancer referred for explorative surgery, performance status 0–2 with respiratory and cardiac status allowing surgery in accordance with national and international guidelines [30,31]. Participants had also to be a resident in the City of Copenhagen or a surrounding municipality and able to read and understand Danish.
Potential patients were identified and screened for eligibility, and thereafter contacted to be informed of the study by the research coordinators at the referral departments of pulmonary medicine at Bispebjerg and Gentofte Hospitals. After referral to surgery at the Department of Cardiothoracic Surgery, Rigshospitalet, University of Copenhagen, the subjects were again contacted by telephone and once more informed of the purpose and design of the study. Written informed consent was subsequently obtained from all and baseline assessment prior to surgery was performed at Copenhagen Centre for Cancer and Health, Copenhagen, Denmark.

2.4. Interventions

The postoperative rehabilitation was the same in both intervention groups and consisted of a supervised 12-week rehabilitation program containing 24 group-based exercise sessions, three individual counseling sessions, and three group-based lessons in health-promoting behavior. If the participants had special needs in terms of smoking cessation, nutritional counselling or patient education, this was offered too. The postoperative physical exercise consisted of an individually prepared supervised strength exercise and a group-based cardiovascular exercise twice a week (60 min/sessions) on non-consecutive days for 12 weeks, a total of 24 sessions. The intervention is described in detail in Sommer et al 2016 [26].

2.5. Outcomes

The primary endpoint was a change in maximum oxygen consumption (VO2peak) from baseline to post intervention; for the experimental group approximately 26 weeks following lung resection and for the active comparator group approximately 26 weeks following lung resection. VO2peak was evaluated at baseline (preoperative inclusion the day before surgery), after 14 weeks (end of early initiated rehabilitation intervention and beginning of late initiated rehabilitation), 26 weeks (end of late initiated rehabilitation) and 52 weeks follow-up following surgery. VO2 peak was evaluated by an incremental test using an electromagnetically braked cycle ergometer (Lode Corival Ergometer®) and direct measures of respiratory gases (JAEGER MasterScreen CPX®). The pedaling began at 7 W and resistance increased after a predefined 10 W ramp protocol until exhaustion or a symptom-limited VO2peak was achieved.

Secondary endpoints included several patient-reported outcomes (PROs) and physiological measurements evaluated at baseline (preoperative inclusion the day before surgery), after 14 weeks (end of early initiated rehabilitation intervention and beginning of late initiated rehabilitation), 26 weeks (end of late initiated rehabilitation) and 52 weeks follow-up following surgery. The PROs included the European Organization for Research and Treatment of Cancer (EORTC) Quality of life Questionnaire (QLQ) C-30 plus the lung cancer specific part assessing symptoms and side effects EORTC-LC13 PROs, the Functional Assessment of Cancer Therapy – Lung (FACT-L) scale assessing HRQoL, the 36-Item Short Form Health Survey (SF-36) assessing general well-being, the Hospital Anxiety and Depression Scale (HADS) assessing psychological well-being, the Multidimensional Scale of Perceived Social support (MSPSS) assessing social support, The distress thermometer and Physical activity scale ver. 2. The physiological measurements included functional capacity assessed by six-minute walking distance (6MWD) test, lung capacity assessed by spirometry, and muscle strength chest and leg press measured by one repetition maximum (1RM). In addition a change in maximum oxygen consumption (VO2max) registered from baseline to 52 weeks following surgery was a secondary outcome.

All PROs and physiological variables were measured at baseline (preoperative inclusion the day before surgery), after 14 weeks (end of early initiated rehabilitation intervention and beginning of late initiated rehabilitation), 26 weeks (end of late initiated rehabilitation) and 52 weeks follow-up. In addition, the 6MWD, lung capacity and FACT-L were assessed two and eight weeks after baseline.

2.5.1. Data management and ethical considerations

Trial data consisting of questionnaires, physiologic variables and medical data gathered from the participants’ medical records were entered into a database, OpenClinica, hosted by the Copenhagen Trial Unit (CTU), Rigshospitalet, Copenhagen, Denmark. Data management was approved by the Danish national authority: Datatilsynet, with file
With a two-sided 5% significance level, a power of 80%, and with the smallest clinical relevant difference set at 2 mL O$_2$ · kg$^{-1}$ · min$^{-1}$, a sample size of $n = 128$ participants were needed to complete the intervention. Given an anticipated high dropout rate of 40% within the first year of follow-up, the number of participants to be included was estimated to be 213. In addition 10% were anticipated to be excluded following surgery due to either inoperability, metastatic disease or no malignancy for which reason the number of patients to be included increased to 235. The change in VO$_2$peak was assumed to have a standard deviation of 4.0 mL · kg$^{-1}$ · min$^{-1}$ as observed in previous research [32,33].

2.7. Randomization

Following completion of baseline assessments, participants were sequentially numbered, stratified by type of surgery (video-assisted thoracic surgery (VATS) versus thoracotomy surgery) and randomly allocated by a computer at the CTU (equal weight 1:1) to one of the two study groups. CTU generated the allocation sequence of each participant on request of an Investigator of the trial. The same investigator assigned the participants to one of the two intervention groups.

2.8. Blinding

Assessors and data analysts were blinded to allocation, yet participants and investigators assigning to the intervention groups were aware of the allocations. Participants were strictly informed not to reveal their group allocation to the test personnel.

2.9. Statistical analysis

An intention-to-treat (ITT) analysis including all randomized participants was done. The primary analysis was a between-group difference at completion of early initiated postoperative rehabilitation and late...
initiated postoperative rehabilitation, 14 weeks and 26 weeks following lung resection respectively. As not all participants received adjuvant chemotherapy after lung resection, subgroup-analyses of the influence of adjuvant chemotherapy on primary and secondary outcomes was done in addition. Data from PROs was presented as mean, standard deviations (SD), median and inter-quartile range (IQR) and all change scores was presented with 95% confidence interval.

3. Results

From April 2013 to June 2016, 582 patients with operable NSCLC were screened for eligibility (Fig. 1); 106 patients were excluded, leaving 466 eligible patients. With 119 patients randomized in the early rehabilitation group (ERG) (68 females, 51 males; median age 65), and 116 randomized to late rehabilitation group (LRG) (62 females, 54 males; median age 65) the recruitment rate was 52.6%. Twenty-four patients were excluded after surgery due to no or other malignancies than operable NSCLC (9 patients in ERG, 15 patients in LRG). Dropout from baseline to 26 weeks in the ERG was 38.7% and 41.5% in LRG. In the ERG 42 patients and in the LRG 43 patients were undergoing concurrent systemic adjuvant treatment (Table 1). Baseline demographic and surgical characteristics of the study population is presented in Table 1.

3.1. Physical capacity, functional capacity and lung function

Table 2 shows the results of VO₂peak throughout the project timeline (baseline, 14 weeks, 26 weeks and 52 weeks). Primary outcome was VO₂peak from baseline to 26 weeks and there was a non-significant decrease in both ERG and LRG. There was no significant difference between ERG and LRG (p = 0.926). However there was a significant decrease from baseline to 14 weeks in both ERG (p = 0.027) and LRG (p < 0.001) and a significant difference between the ERG and LRG groups (p < 0.001). There was a non-significant increase from 14 weeks to 26 weeks in ERG (p = 0.464) and a significant increase from 14 weeks to 26 weeks in LRG (p < 0.001) and a significant difference between the two groups (p < 0.001). From baseline to 52 weeks there were a non-significant increase in both groups (ERG, p = 0.228; LRG,
p = 0.158) and a non-significant difference between groups (p = 0.853). A more detailed presentation of the VO2_max is found in supplementary.

In the 6MWT (Table 3) there was a significant increase from baseline to 26 weeks in both ERG (p < 0.001) and LRG (p < 0.001) and a non-significant difference between groups (p = 0.729). Results from baseline to 14 weeks; 14 weeks to 26 and baseline to 52 weeks are presented in Table 3. With regard to respiratory capacity expressed by FEV1 (Table 3) there was a significant decrease from baseline to 26 weeks in both ERG (p < 0.001) and LRG (p < 0.001) and a significant difference between groups (p = 0.015). Results from baseline to 14 weeks; 14 weeks to 26 and baseline to 52 weeks are presented in Table 3. A more detailed presentation of the 6MWT and FEV1 is found in supplementary.

3.2. Quality of Life

Table 4 presents the QOL results (EORTC-C30) throughout the project timeline (baseline, 14 weeks, 26 weeks and 52 weeks). There was significant improvements in EORTC Global Health Status in both group ERG (p = 0.02) and LRG (p < 0.002) from baseline to 26 weeks ERG and none significant difference between groups (p = 0.518). The remaining domains in EORTC-C30 (besides fatigue) from baseline to 26 weeks are presented in Table 4. A more detailed presentation of the EORTC is found in supplementary.

3.3. Fatigue

The development in fatigue throughout the project timeline (baseline, 14 weeks, 26 weeks and 52 weeks) is presented in Table 5. From baseline to 26 weeks there was a non-significant decrease in the ERG (p = 0.480) and in the LRG (p = 0.848) and a non-significant difference between groups (p = 0.533) in fatigue. From baseline to 14 weeks there were a non-significant increase in the ERG (p = 0.902) and a significant increase in the LRG (p < 0.001) and a significant difference between groups (p = 0.015) with regard to fatigue. From 14 weeks to 26 weeks there were non-significant decrease in the ERG (p = 0.244) and a significant decrease in the LRG (p < 0.001) and a significant difference between groups (p = 0.021). From baseline to 52 weeks there were none significant decrease in both groups (ERG, p = 0.900; LRG, p = 0.230) and no significant difference between groups (p = 0.021).

3.4. PROs

Results from SF-36, HADS, MSPSS, 1RM are presented in supplementary.

4. Discussion

This study is to our knowledge the first study to investigate the effect of early vs. late initiated postoperative rehabilitation in patients with operable lung cancer on exercise capacity (primary outcome), functional capacity and QOL. We found no significant difference between ERG and LRG from baseline to 26 weeks, but both groups who were offered the same exercise intervention with a different timeframe from baseline (14 days or 14 weeks after surgery) responded (VO2peak) to the intervention they were allocated to when evaluated by VO2peak or functional capacity (6MWD). The design of this study was to investigate if there was any difference in the cardiovascular response when an intervention was commenced early (14 days) or late (14 weeks) after surgery. Both groups had a significant decrease in VO2peak from baseline to 14 weeks but the LRG had a significantly higher decrease in VO2peak than the ERG. We did expect a decrease in the LRG due to the magnitude and impact of the surgery, which was the same for both groups but also due to the prolonged start of rehabilitation for the LRG. The significant decrease in the ERG was on the contrary not expected even though the ERG had a significantly smaller decrease than the LRG the ERG did not reach the same VO2peak level as pre surgery. Other comparable studies [27,34,35] showed significant effect of an exercise intervention or at least a maintained VO2peak or 6MWD after completion of an intervention. Edvardsen et al [34] found in a postoperative (5–7 weeks after surgery) randomized exercise intervention a significant increase in VO2peak after a 20 weeks intervention to a level higher than from pre-surgery. The main differences between Edvardsen et al [34] and our study are the commencement of the study, training 3 times a week and the length of the intervention. Both interventions were high intensity so the differences could be found in the length of the two intervention due to the effect of progressive cardiovascular training over time [36], the intervention in Edvardsen et al [34] was 8 weeks longer than our study. Both interventions included patients receiving adjuvant chemotherapy (30% in Edvardsen et al [34] and 35% in our study) and the 8 weeks longer intervention would possible mean that patients would have terminated their planned chemotherapy at the end of the intervention and therefore performed better at the final test. The increased VO2peak in the LRG from 14 weeks to 26 weeks shows an increase comparable to the study of Edvardsen et al [34], in the LRG 37% received chemotherapy which all was terminated at the final test at 26 weeks. To support this, we conducted a sub analysis for patients receiving chemotherapy in both ERG and LRG (appendix ii). From baseline to 14 weeks both groups receiving chemotherapy had a significant decrease in VO2peak with a significant difference between the groups in favour of ERG. From 14 weeks until 26 weeks both groups had a significant increase in VO2peak with a significant difference between the groups in favour of LRG. The completion of chemotherapy seems to have an effect on VO2peak. Another explanation could be due to the recovery time after surgery. We started our intervention 14 days after surgery and Edvardsen et al 5–7 weeks after surgery, even though we showed that early rehabilitation was safe and feasible [30], we cannot rule out that this could play a role.

We found no significant differences in QOL but we found a significant difference between the groups from baseline to 14 weeks in fatigue level in favour of ERG. The ERG maintained the same level of fatigue from baseline to 14 weeks and reported no change in fatigue level throughout the whole study period (baseline, 14 weeks, 26 weeks, 52 weeks). The LRG had a significant increase in fatigue level from baseline to 14 weeks but after the LRG completed the intervention at 26 weeks the LRG had a significant decrease in fatigue level which was maintained at 52 weeks. Fatigue is known to be one of the most common and distressing side effects of cancer and its treatment and might be elevated before treatment onset and typically increases during cancer treatment [37]. No others studies as we know of have shown these convincing findings in lung cancer. On the contrary Cavalheri et al [38] found no between groups differences after a postoperative exercise intervention for patients with lung cancer. Studies within other cancer forms especially breast cancer have shown an effect of exercise on fatigue and [37,39] although one important limitation of the literature on exercise for cancer-related fatigue is the lack of studies that have specifically targeted fatigued patients. Indeed, fatigue may be a significant barrier to participation in exercise interventions, particularly among cancer survivors [40]. We did not target our intervention to fatigued patients but the LRG had an increase in fatigue from baseline to 14 weeks and began their exercise intervention with a significant higher fatigue level compared to baseline values, after 26 weeks both groups had a fatigue level lower than their baseline level. This indicates that fatigue should not be a barrier for commencing an exercise intervention.

This study has some strengths and limitations. To minimize bias assessor (pre- and posttest) and data analysts were blinded to allocation, yet participants and investigators assigning to the intervention groups were aware of the allocations. Participants were strictly informed not to reveal their group allocation to the test personnel.
Another major strength of this study is that it was performed in a municipal setting reflecting a realistic implementation of the intervention into daily practice. The rehabilitation systems for cancer patients in the Nordic countries, Germany and the Netherlands are based on similar, multidimensional and multidisciplinary understanding of cancer rehabilitation, which also enhances the transferability of the results. The low recruitment rate of participants to this study shows that the development of new methods to recruit and motivate patients to participate in perioperative rehabilitation may be very important in the future. One of the limitations in this study was the dropout rate of the study. The dropout rate was approximately 40% in each group, this is similar to other comparable studies within exercise and lung cancer [27,35,38]. This could indicate that the population of patients being operated for lung cancer have difficulties in participating in exercise programs. Other exercise studies with patients with breast cancer reports 20%–30% dropout [41,42]. Some of the reasons to these dropouts could be due to patients’ symptoms burden and physical activity preferences. Patients with lung cancer generally do not have a long exercise history and therefore may find it difficult to suddenly commence an exercise program due to a life threatening disease. Previous studies have emphasized the important role of oncologists and nurses in counselling and recommending exercise to patients, especially patients with no exercise history [43].

5. Conclusion

This is the first randomised clinically controlled trial to investigate the effects of early vs. late initiated postoperative rehabilitation in patients with operable lung cancer. We found no significant difference between ERG and LRG from baseline to 26 weeks on exercise capacity (primary outcome). Both groups were offered the same exercise intervention and responded with an increased VO2peak independent of the allocated group from baseline (14 days or 14 weeks after surgery) to the intervention they were allocated to. We found no significant differences in QOL but we found a significant difference between ERG and LRG from baseline to 14 weeks in fatigue level in favour of ERG. The LRG maintained the same level of fatigue from baseline to 14 weeks and reported no change in fatigue level throughout the whole study period (baseline, 14 weeks, 26 weeks, 52 weeks). The LRG had a significant increase in fatigue level from baseline to 14 weeks but after the LRG completed the intervention at 26 weeks the LRG had a significant decrease in fatigue level which was maintained at 52 weeks. There is no difference on exercise capacity in the commencement (early vs. late) of a postoperative exercise program for patients with lung cancer. But to reduce fatigue patients should be recommended to initiate early exercise programs.

Acknowledgements

The present project was supported by the Danish Cancer Society and the Novo Nordic Foundation.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi: https://doi.org/10.1016/j.lungcan.2018.10.025.

References

